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Abstract

High affinity antigen-specific T cells play a critical role during protective immune responses. Epitope enhancement can elicit
more potent T cell responses and can subsequently lead to a stronger memory pool; however, the molecular basis of such
enhancement is unclear. We used the consensus peptide-binding motif for the Major Histocompatibility Complex molecule
H-2Kb to design a heteroclitic version of the mouse hepatitis virus-specific subdominant S598 determinant. We demonstrate
that a single amino acid substitution at a secondary anchor residue (Q to Y at position 3) increased the stability of the
engineered determinant in complex with H-2Kb. The structural basis for this enhanced stability was associated with local
alterations in the pMHC conformation as a result of the Q to Y substitution. Recombinant viruses encoding this engineered
determinant primed CTL responses that also reacted to the wildtype epitope with significantly higher functional avidity, and
protected against selection of virus mutated at a second CTL determinant and consequent disease progression in
persistently infected mice. Collectively, our findings provide a basis for the enhanced immunogenicity of an engineered
determinant that will serve as a template for guiding the development of heteroclitic T cell determinants with applications
in prevention of CTL escape in chronic viral infections as well as in tumor immunity.
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Introduction

Despite the antigenic complexity of microbes, primary patho-

gen-specific cytotoxic CD8+ T lymphocyte (CTL) responses are

commonly directed to just one or a few determinants. Further-

more, even when multiple epitopes are targeted, distinct patterns

of epitope hierarchy often emerge. Such immunodominant

epitopes commonly elicit high-magnitude CTL responses charac-

terized by potent cytolytic function, whereas subdominant

determinants generate responses that are relatively lower in

magnitude and often less efficacious. In general, potent anti-viral

CTL strongly correlate with control of infection and less clinical

disease. Viral progeny selected on the basis of CTL surveillance

can evolve to evade T cell responses. This selective pressure results

in mutations in immunodominant CTL determinants that

abrogate recognition. CTL escape virus is commonly observed

in humans and nonhuman primates infected with HIV-1, hepatitis

C virus (HCV) or simian immunodeficiency virus (SIV) and its

selection often correlates with disease progression [1–4]. Escape

mutations may diminish binding to the restricting MHC class I

molecule, interfere with T cell receptor (TcR) recognition or

interfere with antigen processing [5–7]. Escape mutations are

usually detected in epitopes targeted by CTL that exhibit high

functional avidity because the corresponding potent CTL response

exerts high selective pressure on the virus [2]. In some HIV-

infected patients, CTL escape occurs without an associated

enhancement of virus replication, suggesting that the mutations

compromised virus fitness or, alternatively, the variant determi-

nant elicited a de novo CTL response [8,9]. Virus fitness is

sometimes restored, with concomitant increased virus replication,

when a second, compensatory mutation is selected [10,11].

Collectively these results suggest that given the importance of

virus diversification (CTL escape) in disease progression, suppres-

sion of selection or outgrowth of CTL escape variants should

improve outcomes in persistently infected animals and humans.

Modulating the immunogenicity of subdominant CTL deter-

minants could potentially lead to the development of more

efficacious vaccines that are more broadly protective and prevent

or minimize the appearance of variant viruses that have mutated

in dominant epitopes targeted by high-avidity CTL responses.

Enhancement strategies, which result in augmented responses to

the native, subdominant epitope, have been described for both

MHC class I and class II-restricted determinants, whereby the

most common approaches involve generating a series of conserved

and non-conserved mutations at MHC anchor residues, followed

by an empiric determination of whether each individual
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substitution augments T cell effector function [12]. Furthermore,

evaluating the effect of epitope enhancement in vivo has generally

been achieved via heterologous infection systems [13–15]. Thus,

while these results demonstrate proof of principle, direct evidence

for enhanced protection against autologous microbial infection in

vivo is lacking. The design of heteroclitic determinants in which

non-MHC anchor residues are targeted for substitution are also

usually determined empirically. Studies of heteroclitic tumor

epitopes have demonstrated the clinical utility of such determi-

nants [16,17]. Notably, however, there are no well defined

examples of viral epitopes which demonstrate enhanced immunity

and the molecular basis for the enhanced immunogenicity is not

well understood.

Potential interventions to directly manipulate host-pathogen

interactions and thereby diminish CTL escape variant selection

are often difficult to evaluate since most examples of CTL escape

occur in infected humans or non-human primates. By contrast, mice

persistently infected with mouse hepatitis virus (MHV) strain JHM

(JHMV) serve as a useful system for investigating anti-viral CTL

responses and CTL escape [18–20]. Two JHMV-derived CTL

epitopes are recognized in C57BL/6 (B6) mice. The immunodomi-

nant H-2Db-restricted CTL epitope (S510, CSLWNGPHL, span-

ning residues 510–518 of the Spike (S) glycoprotein) elicits a high-

magnitude, high-avidity CTL response that drives virus diversifica-

tion during persistent infection [18–22]. A second subdominant

CTL epitope, S598 (H-2Kb-restricted, RCQIFANI, spanning

residues 598–605 of the S glycoprotein) also elicits an appreciable

CTL response [21]; however, S598-specific CTL exhibit ,100-fold

lower functional avidity and do not protect from CTL escape in

S510. The presence of a readily mutable dominant and a

subdominant epitope with high and low functional avidity,

respectively, in JHMV-infected mice is useful for investigating both

epitope enhancement and approaches to diminishing CTL escape.

Consistent with this notion, we have previously shown that the

introduction of a second dominant CD8 T cell epitope into the

JHMV genome (GP33 from lymphocytic choriomeningitis virus

(LCMV)) protected mice from the development of CTL escape in

S510 and enhanced virus clearance [22].

Here we determined whether the CD8 T cell response to S598

could be enhanced so that it now elicited a more potent T cell

response that protected mice against the development of CTL

escape at S510 and subsequent clinical disease. We modified

epitope S598 (S598Q600Y) such that it elicited a high-avidity CTL

response and using the crystal structures of the H-2Kb/S598 and

H-2Kb/S598Q600Y complexes, determined the basis of this

enhanced immune response. We then introduced this more

immunogenic S598 epitope into a recombinant version of JHMV

and showed that these high-avidity S598-specific CTLs protected

against escape variants in the immunodominant S510 epitope.

Immunization with the modified peptide resulted in an improved

response to the native S598 epitope, demonstrating a true

heteroclitic effect and suggesting that this strategy may have

clinical applications for reducing viral titer and preventing CTL

escape during chronic infections.

Results

Induction of protective T cell responses with a
heteroclitic virus

As we have previously observed with other MHC/Cys-

containing peptide complexes [19,23], complexes did not readily

form unless the cysteine of the S598 peptide (RCQIFANI) was

modified with L-a-aminobutyric acid (Aba, an isostereomer of

cysteine). The Aba-modified peptides maintained immunogenicity

since a higher frequency of splenic CD8+ T cells from JHMV-

immune mice reacted to Aba-modified S598 peptide, relative to

unmodified S598 peptide (Figure S1A).

Next, we used the consensus H-2Kb binding motif [24] to

engineer a novel, high-avidity S598 CTL epitope. Importantly, Gln-

3 diverges from the consensus H-2Kb-restricted ligand binding motif,

in which a tyrosine is often present at position 3 [24,25]. Therefore,

we substituted a glutamine residue for tyrosine (Q600Y, CAA to

TAT, RCYIFANI) at position 3 of the determinant with the aim of

creating a peptide that bound more tightly to H-2Kb. Stability of the

H-2Kb/S598 and H-2Kb/S598Q600Y complexes was assessed by

circular dichroism (CD). As shown in Figure 1, H-2Kb/S598Q600Y

was considerably more thermostable than the native complex (Tm

54uC vs 64uC). To probe the biological properties of the Q600Y

substitution, we used reverse genetics to engineer a recombinant

version of JHMV expressing the S598Q600Y epitope (Figure 2A).

Recombinant viruses encoding this substitution replicated as

efficiently as wild type JHMV (rJ) in vitro during one-step growth

kinetics analyses and in vivo virus competition assays (Figure 2B, C).

The immunogenicity of S598Q600Y was assessed by intracellular

expression of IFN-c by central nervous system (CNS)-derived

lymphocytes. Since Cys-containing peptides are often diminished in

Author Summary

Enhancing the immune responses to pathogens is a chief
goal of vaccine development. Here, we describe the
development of an engineered CD8+ T cell epitope that
elicits an immune response to the native epitope that is
more potent than the one that occurs during the natural
infection. We showed that this ‘‘improved’’ (heteroclitic)
epitope protects against clinical disease and against
cytotoxic T cell escape that frequently occurs in the
immunodominant epitope expressed by the virus. We also
performed structural analyses and showed that enhanced
immunogenicity was associated with changes in the
conformations of both the peptide and the region of the
MHC class I molecule that is in close association with the
peptide. These studies provide a model for designing T cell
epitopes with enhanced immunogenicity that will be
useful in vaccine development, with particular emphasis
on diseases, such as HIV and hepatitis C, in which epitope
mutation and escape is common.

Figure 1. Thermal stability of the S598 and S598Q600Y epitopes
in complex with H-2Kb. Circular dichroism (CD) analysis of S598-Aba
(dashed line), S510-Aba (variable dash line) and S598Q600Y-Aba (solid
line) complexed with H-2Kb. CD spectra were measured as described in
Materials and Methods.
doi:10.1371/journal.ppat.1000186.g001
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Figure 2. Fitness of and CTL responses elicited by rJ and rJ.SQ600Y. (A) Schematic depictions of recombinant wild type JHMV (rJ),
recombinant JHMV encoding the Q600Y substitution (rJ.SQ600Y) and recombinant JHMV encoding the S598Q600Y substitution in the context of an
S510 CTL escape mutation (S510W513R+Q600Y). (B) Equivalent in vitro growth kinetics among rJ and rJ.SQ600Y viruses. 17Cl-1 cells were infected with rJ
or rJ.SQ600Y at a multiplicity of infection (MOI) of 1.0. Cells and supernatants were harvested at the indicated times and titers were measured by
plaque assay as described in Materials and Methods. Data are representative of two independent experiments. (C) Equivalent in vivo fitness among rJ
and rJ.SQ600Y viruses. Five week old B6 and BALB/c mice were infected with virus mixtures consisting of equal PFU of rJ and rJ.SQ600Y variant virus.
Seven days p.i., total RNA was harvested from the brains of mice and relative representation of virus template was determined via RT-PCR and direct
sequencing of PCR products. The relative proportion of animals in which only rJ, only rJ.SQ600Y, or a mixture of the two viruses is shown. (D) High-
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ability to elicit a CTL response, we included a reducing agent

(TCEP, Tris[2-carboxyethyl] phosphine) in the cultures. TCEP

enhanced the stimulatory capacity of the S598 peptides (Figure
S1B), indicating that a proportion of the unmodified S598 peptide

stock had undergone oxidation. Thus, we stimulated CNS- and

spleen-derived CTL ex vivo in the presence of 500 mM TCEP, a

concentration consistent with other work with Cys containing

peptides [23,26].

The S598Q600Y epitope elicited a CTL response in the CNS of

rJ.SQ600Y infected mice, with nearly 30% of all CD8 T cells

recognizing the determinant (Figure 2D). In addition, CTL

primed by S598Q600Y cross-reacted with the native S598

determinant. The converse was not true, however, as cells primed

by the native epitope failed to produce IFN-c when stimulated

with S598Q600Y peptide (Figure 2D). Of note, the CTL response

to the dominant Db-restricted S510 epitope in rJ.SQ600Y-infected

mice was diminished relative to responses in mice infected with

wildtype rJ virus (Figure 2D, E).

Next, we assessed the relative functional avidity of CTL

populations primed by native S598 and S598Q600Y determinants,

as a surrogate measure of the potency of the anti-virus CTL response

in vivo. CNS-derived mononuclear cells were harvested from mice

infected with rJ or rJ.SQ600Y and examined for IFN-c expression

after stimulation ex vivo in the presence of 10-fold dilutions of the

appropriate peptide. Cells primed to the native S598 epitope (cells

harvested from rJ-infected mice) required approximately 100-fold

more peptide than did S598Q600Y-primed cells to elicit a half

maximal response (100 nM vs. 1 nM, Figure 3A,B).

Because we observed that a subpopulation of S598Q600Y-primed

cells cross-reacted with the native determinant, we next deter-

mined whether this subpopulation also exhibited high functional

avidity. For this purpose, we isolated cells from the CNS of rJ- and

rJ.SQ600Y-infected adult B6 mice and stimulated them with 10-fold

dilutions of native S598 peptide. S598Q600Y-primed cross-reacting

cells exhibited 7-fold higher functional avidity, relative to those

primed by the native determinant (Figure 3C, D) and are

therefore distinct from CTL primed by the native S598

determinant. Consistent with the presence of a distinct population

of cells, there were modest differences in Vb chain utilization when

total populations from rJ and rJ.SQ600Y-infected mice and when

total and cross-reacting cell populations from rJ.SQ600Y-infected

mice (Figure S2) were compared. In all instances, Vb5.1/5.2

expression was relatively over-represented, but some Vb elements

were preferentially utilized by specific responding populations

(Vb11, Vb13 and Vb14). Also consistent with this observation,

alanine scanning mutagenesis of the two determinants revealed

that the CTL response to each cognate peptide following infection

was also subtly different reflecting the altered repertoire. The CTL

response to each cognate peptide was very sensitive to mutation at

every position except 2 and 9 although mutations in the S598Q600Y

determinant were tolerated slightly better than changes in the

S598 epitope (Figure S2C–E).

If CTL recognizing S598Q600Y exhibit high functional avidity in

vivo, they should protect from CTL escape in S510 and might

select for S598Q600Y CTL escape variants. Diversification at S510

is observed in pups infected with neurovirulent JHMV at 10 days

of age and nursed by JHMV-immune dams [27]. These mice are

largely protected from developing acute lethal encephalitis, but a

variable percentage (30–90%) later develop a demyelinating

encephalomyelitis. Infectious virus isolated from these mice with

late onset clinical disease is mutated in S510, resulting in enhanced

virus replication [20], with demyelination occurring during the

process of virus clearance [28]. Thus, we next infected maternal

antibody-protected suckling mice with rJ or rJ.SQ600Y viruses and

monitored persistently infected mice for the development of

clinical signs for 60 days post infection (p.i.). The presence of the

highly immunogenic S598Q600Y epitope did not protect mice from

acute encephalitis (Figure 3E), perhaps because the presence of

the improved S598 epitope was accompanied by a diminished

response to S510 (Figure 2D). However, we found that among

survivors (defined as survival past day 14 p.i.) there was a

significant reduction in the incidence of clinical disease as well as

in the development of CTL escape in S510 (Table 1).

Additionally, S598Q600Y did not undergo CTL escape in mice

persistently infected with rJ.SQ600Y, even though single nucleotide

changes in the region of the S glycoprotein gene encoding the

S598 determinant could potentially result in fifty-one CTL escape

mutations. Thus, as expected, the ‘‘improved’’ S598Q600Y epitope

was protective in vivo in infected mice, likely because S598Q600Y-

specific CTL are present in higher numbers and exhibit higher

functional avidity than the native S598-specific response.

S598Q600Y-specific CTL are protective in mice infected
with S510 CTL escape virus

Since this lack of mutation at S598Q600Y might reflect enhanced

suppression of virus replication mediated by co-dominant CTL

responses directed against S510 and S598Q600Y, we developed a

recombinant virus encoding S598Q600Y in the context of a common

S510 CTL escape mutation, S510W513R (rJ.SW513R+Q600Y,
Figure 2A). The CTL response is predicted to be largely directed

at S598Q600Y in mice infected with this virus. The W513R mutation

(position 4 substitution in S510 epitope, CSLRNGPHL) occurs in

13% of all CTL escape variants [19,20,22,29,30], and completely

abrogates native S510 CTL recognition [31]. We verified that virus-

specific CTL responses were focused on S598Q600Y in adult B6 mice

infected with rJ.SW513R+Q600Y (Figure 3F). To examine the

phenotype of the S598Q600Y/S510W513R double mutant, we infected

antibody-protected suckling B6 mice with this virus and appropriate

controls and monitored mice for survival (Figure 3G). As expected,

93.3% of mice infected with rJ survived the acute infection (day 0–14

p.i.). All mice infected with rJ.SW513R developed fatal encephalitis

but, in marked contrast, 66.6% of mice infected with

rJ.SW513R+Q600Y survived. We also found that survival correlated

with virus clearance (Figure 3H). Relative to rJ-infected mice,

replication was suppressed in mice infected with virus encoding the

S598Q600Y epitope and greatly elevated in mice infected with

rJ.SW513R. In mice infected with rJ.SW513R+Q600Y, virus titers were

intermediate between rJ and rJ.SW513R. Thus, the presence of the

heteroclitic S598Q600Y determinant contributed to suppression of

virus replication and to increased survival, even when the high-

magnitude, high-avidity CTL response to S510 was largely

abrogated.

Surprisingly, S598Q600Y still did not undergo sequence

diversification in mice that survived the rJ.SW513R+Q600Y infection

(Table 2). This result was unexpected, as the majority of CTL in

the rJ.SW513R+Q600Y-infected CNS specifically target the

magnitude, unidirectional cross-reactivity. Representative dot plots demonstrating the frequency of epitope-specific CD8 T cells in a mouse infected
with rJ (top panels) or rJ.SQ600Y (bottom panels). Numbers represent the frequency of epitope-specific CD8 T cells among total CD8 T cells recovered
from the brains of mice 7 days p.i. (E) Summaries of the frequency (left panel) and absolute number (right panel) of epitope-specific CD8 T cells
recovered from the brains of rJ and rJ.SQ600Y-infected mice 7 days p.i. Data shown in D represent mean6SEM for 4 independent experiments.
doi:10.1371/journal.ppat.1000186.g002
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S598Q600Y determinant and exhibit high functional avidity

(Figure 3A–C). One possible explanation for this result is that

S598 is not as plastic as S510, even though both determinants are

derived from a region of the spike gene that is hypervariable and

even deleted in some strains of MHV [32].

Enhanced recognition of S598 by cells primed to
S598Q600Y

To determine whether cells primed to S598Q600Y that cross-

react with the native S598 determinant were more protective in

vivo than S598-primed cells, we vaccinated mice with bone

marrow-derived dendritic cells (BMDC) alone, or BMDC pulsed

with peptides corresponding to S598 or S598Q600Y (Figure 4).

Seven days later, mice were challenged via intranasal inoculation

of 46104 PFU of wild type, non-recombinant JHMV. Similar to

results observed following rJ.SQ600Y infection (Figure 3), CTL

primed via DC-S598Q600Y vaccination exhibited higher functional

avidity when reacted against the native S598 determinant when

compared to those arising after DC-S598 vaccination

(Figure 4A). In other experiments, we examined the survival of

mice vaccinated with each determinant, but we observed no

significant differences between groups (data not shown), probably

because mortality is largely CD4 T cell-mediated in adult mice

with acute encephalitis [33,34]. In terms of virus titers, vaccination

with either the native or enhanced S598 determinants resulted in

,70–80% reduction in virus burden compared to mice that

received un-pulsed BMDC (Figure 4B). When we examined the

Table 2. Incidence of clinical disease and CTL escape in rJ and rJ.SW513R+Q600Y infected mice.

Index Virus
(survivors)a

% Clinical
Diseaseb

S510 Escape
Symptomaticc

S510 Escape
Asymptomaticc

S598 Escape: (symptomatic
and asymptomatic)

rJ (n = 14) 43 (6/14) 5/6 3/8 0/14

rJ.SW513R+Q600Y (n = 10) 60 (6/10) 0/6 0/4 0/10

aNumbers that survived acute infection (days 0–14 p.i.).
bx2 = 1.50, P = 0.221 for rJ versus rJ.SW513R+Q600Y.
cx2 = 8.57. P = 0.0034 for epitope S510 CTL escape in rJ versus rJ.SW513R+Q600Y.
doi:10.1371/journal.ppat.1000186.t002

Figure 3. S598Q600Y elicits a CTL response with higher functional avidity than wild type S598, protects from clinical disease in the
context of an S510 CTL escape mutation and enhances virus clearance. (A) Functional avidity analysis of CD8 T cell populations primed by
native S598 determinant or modified S598Q600Y determinant. Five week old B6 mice were infected with rJ or rJ.SQ600Y variant virus. Seven days p.i.,
CNS-derived mononuclear cells were harvested and cell aliquots were stimulated ex vivo with 10-fold serial dilutions of the native S598 peptide (for
rJ-infected) or S598Q600Y peptide (for rJ.SQ600Y-infected). Data are normalized to the frequency of determinant-specific cells detected using 1 mM of
peptide. (B) Concentration of peptide required to elicit a half-maximal response during ex vivo cell stimulation. (C) Functional avidity of cross-reactive
S598Q600Y-primed CTL. Five week old B6 mice were infected with rJ or rJ.SQ600Y, CNS-derived mononuclear cells were harvested and cell aliquots were
stimulated ex vivo in the presence of 500 mM TCEP with 10-fold serial dilutions of only the native S598 peptide. Data are normalized to the frequency
of determinant-specific cells detected using 1 mM of peptide. (D) Concentration of peptide required to elicit a half-maximal response during ex vivo
cell stimulation. Data for A–D represent mean6SEM for 4 independent experiments. (E) Survival analysis of maternal antibody-protected suckling
mice infected with rJ or rJ.SQ600Y variant viruses. Suckling mice were infected at 10 days of age and nursed on dams that had been previously
immunized with virulent JHMV. To control for the delivery of protective maternal antibody, one-half of each litter was infected with rJ while the other
half was infected with rJ.SQ600Y. Data represent results from 10 litters derived from multiple independent JHMV-immune dams. Numbers in
parentheses indicate the number of pups infected with each virus. Mice surviving the acute infection (day 0–14 p.i.) were monitored to day 60 p.i. and
scored as deceased following development of hind limb paralysis/paresis. (F) Frequency of epitope-specific CD8 T cells in the brain of an
rJ.SW513R+Q600Y-infected mouse. Seven days p.i., CNS-derived mononuclear cells were harvested, stimulated ex vivo with the indicated peptides and
stained for CD8 and intracellular IFN-c as described in Materials and Methods. The frequency of cells that produced IFN-c in response to an irrelevant
peptide (OVA (chicken ovalbumen, not shown) was equivalent to the S510-specific response. (G) Survival analysis of suckling mice infected with rJ,
rJ.SW513R or rJ.SW513R+Q600Y. One-third of the pups in an individual litter were infected with each virus. Data represent results from 6 litters derived
from multiple independent JHMV-immune dams. Numbers in parentheses indicate the number of pups infected with each virus. Mice surviving the
acute infection (day 0–14 p.i.) were monitored to day 60 p.i. and scored as deceased following development of hind limb paralysis/paresis. (H) Virus
titers in the brains of maternal antibody-protected suckling mice 5 or 6 days following infection with rJ, rJ.SQ600Y, rJ.SW513R or rJ.SW513R+Q600Y viruses.
One-fourth of the pups in an individual litter were infected with each virus. At the indicated day p.i., brains were aseptically harvested, homogenized
in sterile PBS and clarified by centrifugation. Supernatants were collected and infectious virus was titered on Hela-MHVR (Hela cells transfected with
CEACAM1, the JHMV receptor [59]) as previously described [27]. Symbols on graph represent individual mice assayed from multiple independent
litters. The limit of detection (LOD) for the assay is 80 PFU/brain. Nonpaired, two-sided Student’s t tests were used for statistical analyses.
doi:10.1371/journal.ppat.1000186.g003

Table 1. Incidence of clinical disease and development of CTL escape in rJ and rJ.SQ600Y infected mice.

Index Virus
(survivors)a

% Clinical
Diseaseb

S510 Escape
Symptomaticc

S510 Escape
Asymptomaticc

S598 Escape: (symptomatic
and asymptomatic)

rJ (n = 19) 58 (11/19) 10/11 8/8 0/19

rJ.SQ600Y (n = 19) 21 (4/19)a 0/4 0/15 0/19

aNumbers that survived acute infection (days 0–14 p.i.).
bx2 = 5.39, P,0.025 for rJ versus rJ.SQ600Y.
cx2 = 32, P,0.0001 for rJ versus rJ.SQ600Y.
doi:10.1371/journal.ppat.1000186.t001
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frequency and numbers of virus-specific CTL in the CNS of these

same mice, we detected markedly fewer S598-specific CTL in the

CNS of mice that received BMDC pulsed with S598Q600Y peptides

(Figure 4C). Calculation of the product of virus titers and CTL

numbers within individual mice, as an approximate measure of

CTL potency, indicated that the S598-specific CTL in S598Q600Y-

coated BMDC vaccinees were ,6-7-fold more efficacious on a per

cell basis (Figure 4D). Thus, S598-specific CTL induced by the

S598Q600Y determinant show similar enhancement in function

compared to S598-primed cells, whether measured in vitro

(Figure 3C,D) or in vivo (Figure 4D).

Structures of the wild-type and engineered S598 H2Kb

complexes
While these studies clearly demonstrated that S598Q600Y is

heteroclitic, they did not provide a mechanism for the immune

enhancement. To address this, we determined the crystal

structures of the H-2Kb/S598 (PDBid 2ZSV, Protein Data Bank

Japan (http://www.pdbj.org/)) and H-2Kb/S598Q600Y (PDBid

2ZSW) complexes to 1.8 Å and 2.8 Å resolution respectively. The

structure of H-2Kb/S598 consists of two heterodimers in the

asymmetric unit (r.m.s.d. of 0.18 Å for Ca atoms), with the S598

peptide clearly bound in the antigen binding cleft of the heavy

chains (HC, Figure S3A). The two peptide copies display a

virtually identical configuration with root mean square deviation

(rmsd) values of only 0.09 Å for all peptide atoms (0.05 Å for Ca
atoms). The mode of S598 and S598Q600Y binding within the Ag-

binding cleft is unambiguous, with the exception of Arg-1, whose

side chain is partially disordered (Figure 5A,D; Figure S3C).

The S598 peptide adopts an extended conformation, with the side

chains of Arg-1, Ile-4 and Asn-7 extending prominently out of the

cleft (Figure 5C). Ala-6 is also largely solvent exposed with its side

chain pointing towards the a2 helix, while the side chains of Cys

(Aba)-2, Gln-3, Phe-5 and Ile-8 are buried within the cleft. While

the cysteine analogue’s side chain is not involved in any

hydrophilic interactions, there are a number of suitably positioned

hydrogen bonding partners (Glu-24, Tyr-45 and Asn-70), with

which the original thiol side chain could potentially interact

(Figure S3B; Table S2).

In addition to main chain interactions across the length of the

peptide, S598 is anchored to the MHC via the side chains of Gln-

3, Phe-5 and Ile-8. Gln-3 forms hydrogen bonds with the Ser-99

and Gln-114 of the HC (Figure 5B), while Phe-5 and Ile-8 are

buried within hydrophobic pockets. In addition, the side chains of

Phe-5 and Gln-3 pack against each other and between the

aromatic rings of HC residues Tyr-159 and Phe-74, constraining

the peptide’s backbone conformation at those positions.

The structure of H-2Kb/S598Q600Y consists of four heterodi-

mers in the asymmetric unit (rmsd of 0.09 Å for heavy chain (HC)

Ca’s), the four copies of the peptide adopting virtually identical

conformations (rmsd of 0.12 Å for all peptide atoms and 0.05 Å for

Figure 4. Functional avidity and protective capacity of cross-
reactive, S598Q600Y-primed CTL. (A) Functional avidity analyses of
S598- and S598Q600Y-primed CTL. Groups of 4-week-old B6 mice were
vaccinated with LPS-matured bone marrow-derived DC pulsed with
peptides corresponding to S598Q600Y, native S598 or no peptide. Seven
days following DC vaccination, mice were intranasally infected with
86104 PFU of non-recombinant JHMV. On day 7 p.i., CNS-derived

mononuclear cells were stimulated ex vivo with 10-fold serial dilutions
of native S598 peptide. Data are normalized to the frequency of S598-
specific cells detected using 1 mM of peptide. Data represent mean6-

SEM for 3 independent experiments. (B–D) Virus titers and magnitude
of CTL response. Brains were aseptically removed from individual DC-
vaccinated mice 7 days following JHMV challenge. One-half of the brain
was homogenized and clarified for viral titer determination (B) while
the other half was used to determine the numbers of S598-specific CTL
(C). The relative efficacy of S598-specific CTL (D) was derived by
calculating the product of virus titers and absolute numbers of S598-
specific CTL for each individual mouse. Data in B–D represent results
from six individual mice analyzed in two independent experiments.
doi:10.1371/journal.ppat.1000186.g004
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Ca atoms). S598Q600Y displays the same conformation as the S598

determinant (the average rmsd for peptide Ca atoms between the

two structures is 0.24 Å) and forms equivalent interactions with the

MHC. The only prominent structural difference is observed at the

mutated position (Q3RY3) (Figure 5B,E, 6A,B). In contrast to

Gln-3, the Tyr-3 side chain is oriented towards the a-2 helix rather

Figure 5. Refined structures of WT and Q600Y S598-Aba bound to H-2Kb. (A) View of the H-2Kb antigen binding cleft from above. The HC is
shown as a cartoon representation and coloured slate. The peptide is in stick format with carbon atoms coloured yellow. The final 2Fo-Fc map density
for the peptide contoured at 1.0 s is shown as a magenta mesh. (B) Detail of the antigen binding cleft displaying key interactions (dashed lines)
between H-2Kb and S598-Aba in the region surrounding position 3 of the peptide. Selected residues of the HC are drawn in stick format (slate carbon
atoms). Peptide residues are labelled in italics. (C) Surface representation of the H-2Kb/S598-Aba complex as seen from above. Peptide residues Arg-1,
Ile-4 and Asn-7 are coloured wheat. Position 3 of the peptide (Gln) is coloured red and the HC residue E-152 is purple. D, E and F, Equivalencies to A, B
and C, respectively, for the H-2Kb/S598Q600Y-Aba structure. In these panels the HC is drawn in green and the peptide in cyan.
doi:10.1371/journal.ppat.1000186.g005
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than the floor of the cleft. Consequently, the interactions with Ser-

99 and Gln-114 of the HC are lost and instead the tyrosine’s

hydroxyl group forms a hydrogen bond with the side chain of Glu-

152 (Figure 5E). The side chain of Tyr-3 also forms a number of

close contacts with the residues in its immediate environment,

specifically HC residues Gln-114, Arg-155, Leu-156 and Tyr-159,

as well as intramolecular interactions with Phe-5 (Table S2). In

addition to Tyr-3, deviations of potential significance (.0.5 Å) in

the peptide structures that are attributable to the Q660Y mutation

are observed at Ile-4 and Phe-5.

Overall the S598 determinant displays greater complementarity

for the antigen binding cleft of H-2Kb in its N-terminal region,

with few stabilizing interactions observed between the HC and

positions 6 and 7. (Figure S3B, D; Table S2). Nevertheless, a

pocket is observed between the a-2 helix and the peptide near

position 3 in the index structure that is filled by the steric bulk of

Tyr-3 in the Q600Y structure (Figure 5C,F). This increase in

surface complementarity and the greater number of observed

interactions resulting from the Q3RY3 mutation would account

for the enhanced thermostability (,10uC) measured for the H-

2Kb/S598Q600Y–Aba complex by circular dichroism (Figure 1).

This increase in complementarity of the MHC for S598Q600Y and

the greater stability of the resulting complex were predicted from

comparisons of the WT determinant complex with existing

structures of H-2Kb bound with peptides similar to S598 and

possessing the consensus tyrosine anchor residue at position 3, as

well as another aromatic residue at position 5.

With respect to the HC, the a-1 and a-2 domains of the two

structures superimpose well with an rmsd of 0.37 Å for Ca atoms

(residues 1–176). Nevertheless, significant deviations (.0.5 Å) are

observed between the two structures at a number of positions in

the region of the antigen binding cleft. In particular, changes in the

conformation of Ser-99, Gln-114, and Gly-151-Glu-154 are

associated with the bound peptides. Changes in the side chain

conformations of Ser-99 and Gln-114 in the Q600Y complex

structure are consistent with the loss of hydrogen bonding

interactions with position 3. In the wild type peptide structure,

Glu-152 forms a salt bridge with Arg-155, the guanadinium group

of which also forms a hydrogen bond with the main chain

carbonyl group of the peptide’s Ile-4. While these interactions are

maintained in the Q600Y complex, the side chain of Glu-152

displays a conformational shift consistent with the formation of a

hydrogen bond with the peptide’s Tyr-3 (Figure 6). Interestingly

the region of the a-2 helix around Glu-152 (Gly-151 - Glu-154)

also displays significant main chain and side chain deviations

between the two structures (rmsd of 0.77 Å for Ca atoms;

Figure 6). Thus, consistent with the functional analyses, the

structure of the heteroclitic variant of the S598 epitope displays

relatively small changes in conformation yet the combination of

these subtle changes in the TcR accessible residues and the

structural landscape of the MHCp in addition to the enhanced

stability of the complex lead to more efficacious CTL responses.

Discussion

We describe the identification of a heteroclitic determinant that

enhances recognition by virus-specific CD8 T cells, and use the

crystal structure of the new determinant (S598Q600Y) to provide a

basis why it elicits an enhanced CTL response. Comparison of

S598 to the consensus binding motif suggested a suboptimal

interaction with the H-2Kb molecule at the secondary anchor

position (Gln-3) and, consequently, an approach to enhance the

immunogenicity of the determinant. Replacement of the Gln-3

with Tyr-3 (Q600Y) did, indeed, result in an determinant with

increased thermostability without diminishing the CD8 T cell

response. Most strikingly, the Q600Y change resulted in subtle

changes in the conformation of the a-2 helix locally in the vicinity

of Glu-152. These subtle changes are likely critical for the

enhanced TcR recognition that we detected.

S598Q600Y elicited a response with higher functional avidity to

both the cognate and native determinants than S598, and this was

not reflected in differential Vb usage. The T cell response to S598

in rJ-infected mice is very diverse [35]. As assessed by Vb usage,

the response to S598 and S598Q600Y in rJ.S598Q600Y was similarly

diverse with only modest differences noted when cells from mice

primed by S598 and S598Q600Y were compared. While we cannot

exclude the possibility that cross-reacting S598-specific cells

primed by S598Q600Y are biased for Vb chains not analyzed in

this study, it is more likely that the fine specificity of the

complementarity-determining region 3 (CDR3) determines their

greater affinity for H-2Kb/S598. Although an increase in stability

of the MHC class I/peptide complex is not generally expected to

enhance TcR affinity for the complex, similar results have been

observed in mice immunized with analogues to a common tumor

antigen [36].

One unexpected result was that S598 exhibited both low MHC

class I and low TcR avidity. Previous studies showed that this

determinant exhibited low functional avidity [21], but it was not

known whether this reflected low binding to the MHC class I or to

the TcR. Assuming that low affinity for MHC class I results in a

low effective concentration of H-2Kb/S598 complex on the cell

Figure 6. Comparison of the WT and Q600Y S598-Aba
complexes with H-2Kb. Superpositions were carried out using the
Ca atoms of HC residues 1–176. (A) View of the H-2Kb antigen binding
cleft from above. The HC backbone is shown in ribbon format and the
peptide residues as sticks. The index determinant is drawn with yellow
carbons and the Q600Y variant with cyan. This colour scheme is
extended to include the HC carbon atoms of the same structure. (B)
Detail of the antigen binding cleft showing conformational differences
between the WT and Q600Y structures in the region surrounding
position 3 of the peptide.
doi:10.1371/journal.ppat.1000186.g006
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surface, the responding T cells should be high avidity, based,

primarily, on in vitro studies [37]. While the relationship between

level of surface peptide and avidity of the responding T cells

generated in vivo is not as clearcut [38], there is no obvious

explanation for how a peptide with low MHC class I binding also

elicits a low avidity T cell response. This selection of only a subset

of CD8 T cells capable of responding to S598 may partly explain

why S598-primed cells do not recognize the Q600Y determinant.

The biological significance of the heteroclitic Q600Y determi-

nant was shown by its ability to protect JHMV-infected mice from

CTL escape at S510 and to diminish clinical disease. This was

important to demonstrate because other studies, using tumor

models, have shown that immunogenicity and tumor recognition

are not necessarily concordant [39]. Mutations resulting in CTL

escape occur most commonly in determinants that are exposed to

high selective pressure [40–42] and outgrowth of CTL escape

variants is efficiently suppressed by effective and rapid virus

clearance [43–46], as occurs in mice infected with rJ.SQ600Y.

Thus, even though CTL escape is not detected in normal mice

infected with LCMV or influenza, escape does occur when mice

transgenic for a single LCMV-specific TcR are infected with high

amounts of virus [44,47]. Under these conditions, the immune

response is highly focused on a single CD8 T cell determinant and

virus replication continues for extended periods of time, facilitating

mutation at the targeted determinant.

In mice infected with wild type JHMV, the CTL response is

functionally focused on S510 [21]; the Q600Y substitution effectively

prevents CTL escape at either S510 or S598Q600Y by the induction

of a second high avidity CTL response. Mutations in S598Q600Y

were not detected even when the CTL response was directed

primarily at this determinant (e.g. mice infected with

rJ.SW513R+Q600Y). Consistent with this inability to readily tolerate

mutations, we were unable to generate recombinant virus mutated in

position Ile-4 (I601D,E,K,R,T) and recombinant virus mutated at

Phe-5 (F602A) was highly attenuated (data not shown). The

combination of induction of high avidity CTL and inability to

tolerate mutation without adversely affecting virus fitness make

S598Q600Y an ideal target for the anti-JHMV CTL response.

Further, the ala scanning results suggest that S598Q600Y-specific

CTLs may more readily tolerate changes in the H-2Kb/peptide

complex, and this plasticity would also minimize the likelihood of

CTL escape. In contrast, we have previously shown that

introduction of the LCMV-specific GP33 determinant, which also

elicits CTL with high functional avidity, into JHMV greatly

diminished clinical disease but did not prevent CTL escape [22].

The GP33 determinant was introduced at a site in the genome that

tolerated mutation and deletion and intact determinant was no

longer present in virus by day 20 p.i. Collectively these results suggest

that a response to a second determinant that elicits CTL exhibiting

high functional avidity at early times p.i. results in enhanced

suppression of virus replication, but its presence throughout the

infection is required to protect against CTL escape.

In conclusion, we have demonstrated that crystal structures are

useful in gaining an understanding of the basis of heteroclitic

epitopes and can also prove valuable in guiding the rational design

of ‘‘better’’ CTL epitopes. In our mouse system, immunization

with the heteroclitic determinant resulted in the generation of

unique populations of CTL that respond with high functional

avidity to an otherwise modestly immunogenic viral epitope. The

generation of unique populations of CTL that respond with high

functional avidity to weakly immunogenic epitopes will be useful

for the treatment and prevention of human infectious diseases.

Our proposed structure-guided approach has direct application to

HIV, HCV and other chronic infections in which virus persistence

and CTL escape occurs. By modulating T cell immunity through

prophylactic or therapeutic peptide-based vaccination, virus titers

may be reduced and CTL escape and other consequences of viral

persistence circumvented.

Materials and Methods

Mice
Specific pathogen-free B6 and BALB/c mice were obtained

from National Cancer Institute (Bethesda, MD). To obtain

infected mice in which CTL escape at S510 was detected, suckling

B6 mice were infected intranasally with 2–46104 PFU of

recombinant JHMV at 10 days of age and nursed by dams that

were immunized with JHMV, as described previously [27]. For

experiments comparing multiple JHMV variants, each litter

served as an internal control: equal numbers of pups were infected

with rJ and one to three recombinant variant viruses, depending

on litter size. All animal studies were approved by the University of

Iowa Animal Care and Use Committee.

Intracellular cytokine staining
Mononuclear cells were harvested from the brains of acutely ill

mice 7 days p.i. and analyzed for expression of IFN-c by an

intracellular cytokine staining protocol as previously described

[28]. Unless otherwise noted, peptides corresponding to epitopes

were used at a final concentration of 1 mM and cells were

stimulated in the presence of 500 mM TCEP (Sigma, St. Louis,

MO). Cells were analyzed using a FACScan flow cytometer (BD

Biosciences, Mountain View, CA). Data sets were analyzed using

FlowJo software (Tree Star, Inc, Ashland, OR). All antibodies and

reagents were purchased from BD Pharmingen (San Diego, CA).

Recombinant viruses
Recombinant wild-type and S510 and S598 variants of JHMV

were generated as previously described [48,49]. Briefly, overlapping

extension polymerase chain reaction (PCR) was used to generate the

S598Q600Y and S510W513R variants. Primers that overlapped the

glutamine at residue 600 of the spike glycoprotein were (59 to 39)

Q600Y fwd, ATGATCGCTGCTATATTTTTGCTAACATAT-

TG; Q600Y rev, AATATGTTAGCAAAAATATAGCAGCGAT-

CAT. Primers that overlapped the tryptophan at residue 513 were

(59 to 39) W513R fwd, GTGAGTGTTCTCTTCGGAATGGGC-

CCCATTTGCGCTCGGC; W513R rev, AGCGCAAATGG-

GGCCCATTCCGAAGAGAACACTCAC. The outer primers

for each targeted change were fwd, TGTTGATTGCGCCAG-

CAGCTACATTAG; and rev, ACCTACGGATTGAACGCTAT-

CATTGAC. Underlined nucleotides correspond to the nucleotides

encoding the Gln to Tyr and Trp to Arg substitutions within S598

and S510, respectively. Recombinant viruses encoding the variant

epitope(s) were selected, propagated and titered as previously

described [49]. At least two independent isolates of each recombi-

nant virus were analyzed.

One-step viral growth kinetics
Virus was inoculated onto confluent 17Cl-1 monolayers in a 12-

well plate at a multiplicity of infection (MOI) of 1.0. Groups of cells

were harvested at the indicated time points and total virus (cell-

associated and cell-free) was titered as previously described [27].

In vivo virus competition assay
Equal PFU (2–46104) of rJ and rJ.SQ600Y were combined and

inoculated intranasally into 5-week-old B6 and BALB/c mice.

Total RNA was harvested from the brains of mice 7 days p.i. and

the relative representation of WT (wild type) versus variant
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template was determined by RT-PCR and sequencing. This assay

can specifically detect a given species of template when that species

comprises at least 20% of a heterogeneous pool [50]. Primers used

were (59-39): forward, AACCCCTCGTCTTGGAATAGGAGG-

TATGG; and reverse, CCTACGGATTGAACGCTATCATT-

GACTAAC. PCR products were sequenced directly by the

University of Iowa DNA Core.

Alanine scans and functional avidity determination
For alanine scanning, cells were stimulated ex vivo with the

indicated concentration of native or variant peptide and stained for

CD8 and IFN-c as described above. Data were normalized to the

frequency of cells that reacted to the unmodified S598 or S598Q600Y

peptides. For functional avidity determination, mononuclear cells

were harvested from the brains of rJ or rJ.S598Q600Y-infected mice 7

days p.i. and stimulated ex vivo in the presence of EL-4 cells pulsed

with tenfold dilutions of peptide corresponding to native S598 or

S598Q600Y epitopes. After 5.5 hours, cells were stained for

intracellular IFN-c as described above. For each epitope-specific

population, data were normalized to the frequency of antigen-

specific CTL detected using the highest titration of peptide (1 mM).

Circular dichroism
CD spectra were measured on a Jasco 810 spectropolarimeter

using a thermostatically controlled cuvette at temperatures

between 30 and 90uC. Far-UV spectra were collected and

analyzed as described [23].

TcR Vb chain usage
Cells were harvested from the CNS of mice 7 days p.i. and

stimulated ex vivo with S598 or S598Q600Y peptides. Cell aliquots

were subsequently stained for CD8 (PE-Cy7-anti-CD8a) and Vb
(FITC-anti-Vb2, 3, 4, 5.1/5.2, 6, 7, 8, 9, 10b, 11, 12, 13 or 14,

BD-Pharmingen) followed by intracellular staining for IFN-c (PE-

anti-IFN-c). Data were collected using a Becton Dickinson LSR II

instrument at the University of Iowa Flow Cytometry Facility.

Data are expressed as the proportion of antigen-specific CD8 T

cells that express each Vb chain.

RNA sequence analysis
Total RNA was purified with TRIzol (Invitrogen, Carlsbad,

CA) from the CNS of mice. The 1055 base pair region of the spike

glycoprotein encompassing both S510 and S598 was amplified by

RT-PCR and sequenced directly as previously described [19].

Dendritic cell immunization and JHMV challenge
Bone marrow-derived DC were prepared, pulsed with peptides

and injected into mice as previously described [51]. Briefly, 56105

LPS-matured DC were left uncoated, coated with S598 or

S598Q600Y peptides and injected via tail vein into groups of 4-

week-old mice. Seven days following DC-vaccination, mice were

infected intranasally with 46104 PFU of JHMV. Seven days

following virus infection, brains were harvested from mice and the

frequencies of epitope-specific CD8 T cells were determined by ex

vivo stimulation and intracellular cytokine staining as described

above. In independent studies, DC-S598 and DC-S598Q600Y

priming was verified by harvesting spleens from several mice seven

days following DC-vaccination.

Crystal structure of H-2Kb/S598 and H-2Kb/S598Q600Y

complexes
Crystals of H-2KbS598-Aba were grown at 21uC in 0.1 M

cacodylate pH 6.6, 16% PEG (polyethylene glycol) 8,000, 0.2 M

Ca(OAc)2, using a protein concentration of 9 mg/ml. Crystals were

cryoprotected by stepwise equilibration against mother liquor

containing 5, 10 and 15% glycerol and flash frozen by placing in a

nitrogen stream. A 1.8 Å resolution dataset was collected on an in-

house X-ray source. Crystals of H-2KbS598Q600Y-Aba were grown

at 21uC in 0.1 M cacodylate pH 6.5, 13% PEG 8,000, 0.2 M

Ca(OAc)2, using a protein concentration of 6 mg/ml. Crystals were

cryoprotected by gradual equilibration against mother liquor

containing 20% PEG 8,000 and 5% glycerol before flash freezing.

A 2.8 Å resolution dataset was collected on an in-house source. The

WT data were integrated in MOSFLM [52] and scaled/merged

using SCALA [53]. The Q600Y variant data were processed using

HKL2000. Both structures were solved by molecular replacement in

PHASER [54], against previously solved H-2Kb complexes (PDBid’s:

1G7Q and 1RJY, respectively). The resultant models underwent

iterative cycles of refinement in PHENIX [55] and, REFMAC5 [56]

(restrained and TLS refinement) followed by model building/

correction in COOT [57]. The solvent structures were built using

ARP/wARP [58] and COOT. A summary of the processing and

refinement statistics is presented in Table S1.

Statistical analyses
Statistical significance was determined by nonpaired, two-sided

Student’s t test or chi-squared test, where indicated.

Supporting Information

Figure S1 Immunogenicity of the Aba-modified, S598 peptido-

mimetic. (A) Intracellular IFN-c staining of splenocytes from mice

peripherally immunized with JHMV simulated ex vivo with peptides

(1 mM) corresponding to the native or Aba-modified S598

determinant. (B) Native S598 peptide is more stimulatory when

S598-specific CTL are stimulated in the presence of reducing agent.

Splenocytes were harvested from JHMV-immune mice and reacted

with native S598 peptide (1 mM) in the presence of 500 mM TCEP.

Data in A represent the mean6SEM for 3 experiments. Data in B

are representative of five independent experiments.

Found at: doi:10.1371/journal.ppat.1000186.s001 (0.25 MB TIF)

Figure S2 TCR Vb chain usage and alanine scanning analysis.

(A) Total mononuclear cells were harvested from mice infected

with rJ or rJ.SQ600Y and stimulated ex vivo with S598 and

S598Q600Y peptides, respectively. Following stimulation, aliquots

of cells were surface stained for CD8 and the indicated Vb chain

followed by intracellular cytokine staining for IFN-c. (B) CNS-

derived cells from rJ.SQ600Y-infected mice were stimulated ex vivo

with peptides corresponding to native S598 or S598Q600Y epitopes.

Following stimulation, cells were analyzed as described for (A).

Data represent the fraction of IFN-c+CD8+ T cells expressing

each Vb chain and are derived from cells pooled from 2–3

individual mice. (C) Alanine scanning of the native S598

determinant. CNS-derived mononuclear cells were recovered

from rJ-infected mice 7 days p.i. and stimulated ex vivo in the

presence of 500 mM TCEP and 1 mM of the indicated peptide

then stained for CD8 and intracellular IFN-c. Data are

normalized to the frequency of epitope-specific cells detected

when stimulated with the native S598 determinant. (D) Alanine

scanning of the S598Q600Y determinant. Cells were harvested and

tested as described for B except in this case the cells originated

from the rJ.SQ600Y-infected CNS and were stimulated with 10 nM

S598Q600Y peptide. (E) Alanine scanning of the S598 determinant

recognized by S598Q600Y-primed, cross-reactive CTL. As in C,

but cells were stimulated with 150 nM S598 peptide. For B–D,

concentrations of peptide equivalent to 106 that required for half

maximal stimulation were used; data are mean6SEM from four

Heteroclitic Viral Determinant Prevents CTL Escape

PLoS Pathogens | www.plospathogens.org 11 October 2008 | Volume 4 | Issue 10 | e1000186



independent experiments. Note that the differential responses to

RCAIFANI in panels C and D reflect the differing amounts of

peptide used in the two assays.

Found at: doi:10.1371/journal.ppat.1000186.s002 (0.76 MB TIF)

Figure S3 Refined structures of WT and Q600Y S598-Aba

bound to H-2Kb. (A) View of the H-2Kb antigen binding cleft

from above. The HC is shown as a cartoon representation and

coloured slate. The peptide is in stick format with carbon atoms

coloured yellow. The unbiased Fo-Fc map density for the peptide

contoured at 2.5 s is shown as a magenta mesh. (B) The same

view as in A displaying key interactions (dashed lines) between H-

2Kb and S598-Aba. Selected residues of the HC are drawn in stick

format (slate carbon atoms) and ordered water molecules are

shown as red spheres. Peptide residues are labelled in italics. C and

D, Equivalencies to A and B, respectively, for the H-2Kb/

S598Q600Y-Aba structure. In these panels the HC is drawn in

green and the peptide in cyan.

Found at: doi:10.1371/journal.ppat.1000186.s003 (4.07 MB EPS)

Table S1 Data collection and refinement statistics.

Found at: doi:10.1371/journal.ppat.1000186.s004 (0.06 MB

DOC)

Table S2 Contacts between the S598 determinant and H-2Kb.

Found at: doi:10.1371/journal.ppat.1000186.s005 (0.07 MB

DOC)
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